NCERT Grade 12-Polymers-Answers

NCERT Solutions for Class 12 Chemistry

Find 100% accurate solutions for NCERT Class XII Chemistry. All questions have been explained and solved step-by-step, to help you understand thoroughly. Free Download option available!

Sign Up to Download as PDF

1.    Polymers are high molecular mass macromolecules, which consist of repeating structural units derived from monomers. Polymers have a high molecular mass (103 – 107 u). In a polymer, various monomer units are joined by strong covalent bonds. These polymers can be natural as well as synthetic. Polythene, rubber, and nylon 6, 6 are examples of polymers.

2.    Polymers are classified on the basis of structure as follows:

1. Linear polymers:

These polymers are formed of long straight chains. They can be depicted as:

For e.g., high density polythene (HDP), polyvinyl chloride, etc.

2. Branched chain polymers:

These polymers are basically linear chain polymers with some branches. These polymers are represented as:

For e.g., low density polythene (LDP), amylopectin, etc.

3. Cross-linked or Network polymers:

These polymers have many cross-linking bonds that give rise to a network-like structure. These polymers contain bi-functional and tri-functional monomers and strong covalent bonds between various linear polymer chains. Examples of such polymers include bakelite and melmac.

3.    Addition polymers:

Polyvinyl chloride, polythene

Condensation polymers:

Terylene, bakelite

4.    (i) Hexamethylenediamine [H2N – (CH2)6 – NH2] and adipic acid

(iii) Tetrafluorothene (CF2 = CF2)

5.    Addition polymers:

Polyvinyl chloride, polythene

Condensation polymers:

Terylene, bakelite

6.   Buna – N is a copolymer of 1, 3-butadiene and acrylonitrile.

Buna – S is a copolymer of 1, 3-butadiene and styrene.

7.    Different types of polymers have different intermolecular forces of attraction. Elastomers or rubbers have the weakest while fibres have the strongest intermolecular forces of attraction. Plastics have intermediate intermolecular forces of attraction. Hence, the increasing order of the intermolecular forces of the given polymers is as follows:

(i) Buna – S < polythene < Nylon 6, 6

(ii) Neoprene < polyvinyl chloride < Nylon 6

8.    Polymers are high molecular mass macromolecules composed of repeating structural units derived from monomers. Polymers have a high molecular mass (103 – 107 u). In a polymer, various monomer units are joined by strong covalent bonds. Polymers can be natural as well as synthetic. Polythene, rubber, and nylon 6, 6 are examples of polymers.

Monomers are simple, reactive molecules that combine with each other in large numbers through covalent bonds to give rise to polymers. For example, ethene, propene, styrene, vinyl chloride.

9.   Natural polymers are polymers that are found in nature. They are formed by plants and animals. Examples include protein, cellulose, starch, etc.

Synthetic polymers are polymers made by human beings. Examples include plastic (polythene), synthetic fibres (nylon 6, 6), synthetic rubbers (Buna – S).

10.  Homopolmer

The polymers that are formed by the polymerization of a single monomer are known as homopolymers. In other words, the repeating units of homopolymers are derived only from one monomer. For example, polythene is a homopolymer of ethene.

Copolymer

The polymer whose repeating units are derived from two types of monomers are known as copolymers. For example, Buna-S is a copolymer of 1, 3-butadiene and styrene.

11.  The functionality of a monomer is the number of binding sites that is/are present in that monomer.

For example, the functionality of monomers such as ethene and propene is one and that of 1, 3-butadiene and adipic acid is two.

12.  Polymerization is the process of forming high molecular mass (103 – 107 u) macromolecules, which consist of repeating structural units derived from monomers. In a polymer, various monomer units are joined by strong covalent bonds.

13.   is a homopolymer because it is obtained from a single monomer unit, NH2 – CHR – COOH.

14.  On the basis of magnitude of intermolecular forces present in polymers, they are classified into the following groups:

(i) Elastomers

(ii) Fibres

(iii) Thermoplastic polymers

(iv) Thermosetting polymers

15.  Addition polymerization is the process of repeated addition of monomers, possessing double or triple bonds to form polymers. For example, polythene is formed by addition polymerization of ethene.

Condensation polymerization is the process of formation of polymers by repeated condensation reactions between two different bi-functional or tri-functional monomers. A small molecule such as water or hydrochloric acid is eliminated in each condensation. For example, nylon 6, 6 is formed by condensation polymerization of hexamethylenediamine and adipic acid.

16.  The process of forming polymers from two or more different monomeric units is called copolymerization. Multiple units of each monomer are present in a copolymer. The process of forming polymer Buna-S from 1, 3-butadiene and styrene is an example of copolymerization

Nylon 6, 6 is also a copolymer formed by hexamethylenediamine and adipic acid.

17.  Polymerization of ethene to polythene consists of heating or exposing to light a mixture of ethene with a small amount of benzoyl peroxide as the initiator.

The reaction involved in this process is given below:

18.  Thermoplastic polymers are linear (slightly branched) long chain polymers, which can be repeatedly softened and hardened on heating. Hence, they can be modified again and again. Examples include polythene, polystyrene.

Thermosetting polymers are cross-linked or heavily branched polymers which get hardened during the molding process. These plastics cannot be softened again on heating. Examples of thermosetting plastics include bakelite, urea-formaldehyde resins.

19.  (i) Vinyl chloride (CH2 = CHCl)

(ii) Tetrafluoroethylene (CF2 = CF2)

(iii) Formaldehyde (HCHO) and phenol (C6H5OH)

20.  One common initiator used in free radical addition polymerization is benzoyl peroxide. Its structure is given below.

21.  Natural rubber is a linear cis-polyisoprene in which the double bonds are present between C2 and C3 of the isoprene units.

These cis-double bonds do not allow the polymer chains to come closer for effective interactions therefore this intermolecular force of interactions between the various strands of isoprene unit are quite weak. As a result, various strands in natural rubber are arranged randomly. Hence, it shows elasticity.

22.  Natural rubber though useful has some problems associated with its use. These limitations are discussed below:

1. Natural rubber is quite soft and sticky at room temperature. At elevated temperatures (> 335 K), it becomes even softer. At low temperatures (< 283 K), it becomes brittle. Thus, to maintain its elasticity, natural rubber is generally used in the temperature range of 283 K-335 K.

2. It has the capacity to absorb large amounts of water.

3. It has low tensile strength and low resistance to abrasion.

4. It is soluble in non-polar solvents.

5. It is easily attacked by oxidizing agents.

Vulcanization of natural rubber is done to improve upon all these properties. In this process, a mixture of raw rubber with sulphur and appropriate additive is heated at a temperature range between 373 K and 415 K.

23.  The monomeric repeating unit of nylon 6 is [NH – (CH2)5 – CO], which is derived from Caprolactam.

The monomeric repeating unit of nylon 6, 6 [NH – (CH2)6 – NH – CO – (CH2)4 – CO], which is derived from hexamethylene diamine and adipic acid.

24.  

25.  (i) The monomers of the given polymeric structure are decanoic acid

[HOOC – (CH2)8 – COOH] and hexamethylene diamine [H2N(CH2)6NH2].

(ii) The monomers of the given polymeric structure are

26.  In the presence of zinc acetate and antimony trioxide at 420-460 K the condensation polymerisation of ethylene glycol and terephthalic acid leads to the formation of dacron with the removal of water molecule.

27.  A polymer that can be decomposed by bacteria is called a biodegradable polymer.

Poly-β-hydroxybutyrate-CO-β-hydroxyvalerate (PHBV) is a biodegradable aliphatic polyester.

MySchoolPage connects you with exceptional, certified chemistry tutors who help you stay focused, understand concepts better and score well in exams!

Have a Question?




Mathematics - Videos


Physics - Videos


Biology - Videos


Chemistry - Videos