NCERT Grade 11-Biomolecules-Answers

NCERT Solutions for Class 11 Biology

Find 100% accurate solutions for NCERT Class XI Biology. All questions have been explained and solved step-by-step, to help you understand thoroughly. Free Download option available!

Sign Up to Download as PDF

1.     Macromolecules are large complex molecules that occur in colloidal state in intercellular fluid. Macromulecule are formed by the polymerization of low molecular weight micromolecules. Polysaccharides, proteins, and nucleic acids are common examples of macromolecules.

2.    (a) Glycosidic bond is formed normally between carbon atoms, 1 and 4, of neighbouring monosaccharide units.

(b) Peptide bond is a covalent bond that joins the two amino acids by – NH – CO linkage.

(c) Phosphodiester bond is a strong covalent bond between phosphate and two sugar groups. Such bonds form the sugar phosphate backbone of nucleic acids.

3.    The helical polypeptide chain undergoes coiling and folding to form a complex three dimensional shape referred to as tertiary structure of proteins. These coils and folds are arranged to hide the non-polar amino acid chains and to expose the polar side chains. The tertiary structure is held together by the weak bonds formed between various parts of the polypeptide chain.

4.     (a)

1. Adenosine

2. Thymidine

3. Sucrose

4. Maltose

5. Lactose

6. Ribose

7. DNA

8. RNA

9. Glycerol

10. Insulin

(b)

5.    Yes, if we are given a method to know the sequence of proteins, we can connect this information to the purity of a protein. It is known that an accurate sequence of a certain amino acid is very important for the functioning of a protein. If there is any change in the sequence, it would alter its structure, thereby altering the function. If we are provided with a method to know the sequence of an unknown protein, then using this information, we can determine its structure and compare it with any of the known correct protein sequence. Any change in the sequence can be linked to the purity or homogeneity of a protein. For example, any one change in the sequence of haemoglobin can alter the normal haemoglobin structure to an abnormal structure that can cause sickle cell anaemia.

6.    Proteins used as therapeutic agents are as follows:

1. Thrombin and fibrinogen – They help in blood clotting.

2. Antigen (antibody) – It helps in blood transfusion.

3. Insulin – It helps in maintaining blood glucose level in the body.

4. Renin – It helps in osmoregulation. Proteins are also commonly used in the manufacture of cosmetics, toxins, and as biological buffers.

7.    Triglyceride is a glyceride, which is formed from a single molecule of glycerol, esterified with three fatty acids. It is mainly present in vegetable oils and animal fat.

The general chemical formula of triglyceride is

R2COO – CH2CH (-OOCR2)CH2 – OOCR3

where R1, R2 and R3 are fatty acids. These three fatty acids can be same or different.

8.    Proteins are macromolecules formed by the polymerization of amino acids. Structurally, proteins are divided into four levels.

(a) Primary structure – It is the linear sequence of amino acids in a polypeptide chain.

(b) Secondary structure – The polypeptide chain is coiled to form a three-dimensional structure.

(c) Tertiary structure – The helical polypeptide chain is further coiled and folded to form a complex structure.

(d) Quaternary structure – More than one polypeptide chains assemble to form the quaternary structure.

Milk has many globular proteins. When milk is converted into curd or yoghurt, these complex proteins get denatured, thus converting globular proteins into fibrous proteins. Therefore, by the process of denaturation, the secondary and tertiary structures of proteins are destroyed.

9.    Ball and stick models are 3-D molecular models that can be used to describe the structure of biomolecules. In ball and stick model, the atoms are represented as balls whereas the bonds that hold the atoms are represented by the sticks. Double and triple bonds are represented by springs that form curved connections between the balls. The size and colour of various atoms are different and are depicted by the relative size of the balls. It is the most fundamental and common model of representing biomolecular structures.

In the above ball and stick model of D-glucose, the oxygen atoms are represented by red balls, hydrogen atoms by blue balls, while carbon atoms are represented by grey balls.

10.  Titrating a neutral or basic amino acid against a weak base will dissociate only one functional group, whereas titration between acidic amino acid and a weak acid will dissociate two or more functional groups.

11.   Structure of alanine

12.  Gums are hetero-polysaccharides. They are made from two or more different types of monosaccharide. On the other hand, fevicol is polyvinyl alcohol (PVA) glue. It is not a polysaccharide.

13.  Qualitative tests for proteins, amino acids and fats:

i. Biuret test: The Biuret test for protein identifies the presence of protein by producing light blue to purple colour of the solution.

ii. Grease test for oil: Certain oils give a translucent stain on brown paper. This test can be used to show the presence of fat in vegetable oils.

iii. Ninhydrin test: If Ninhydrin reagent is added to the solution, then the colourless solution changes to pink, blue or purple colour depending on the type of amino acid.

14.   Approximately, 100 billion tonnes of cellulose are made per year by all the plants in the biosphere and it takes 17 full grown trees to make one ton of paper. Trees are also used to fulfil the other requirements of man such as for timber, food, medicines, etc. Hence, it is difficult to calculate the annual consumption of plant material by man.

15.   Properties of enzymes are:

(1) Enzymes are complex macromolecules with high molecular weight.

(2) They catalyze biochemical reactions in a cell. They help in the breakdown of large molecules into smaller molecules or bring together two smaller molecules to form a larger molecule.

(3) Enzymes do not start a reaction. However, they help in accelerating it.

(4) Enzymes affect the rate of biochemical reaction and not the direction.

(5) Most of the enzymes have high turnover number. Turnover number of an enzyme is the number of molecules of a substance that is acted upon by an enzyme per minute. High turnover number of enzymes increases the efficiency of reaction.

(6) Enzymes are specific in action.

(7) Enzymatic activity decreases with increase in temperature.

(8) They show maximum activity at an optimum pH of 6 – 8.

(9) The velocity of enzyme increases with increase in substrate concentration and then, ultimately reaches maximum velocity.

MySchoolPage connects you with exceptional, certified biology tutors who help you stay focused, understand concepts better and score well in exams!

Have a Question?




Mathematics - Videos


Physics - Videos


Biology - Videos


Chemistry - Videos